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Abstract

A method based on a variational procedure in conjunction with a finite difference method is used to
examine the free vibration characteristics and steady state response to a sinusoidally varying force applied
at the center of a viscoelastically point-supported orthotropic elastic plate of rectangular shape. Using the
energy-based finite difference method, the problem is reduced to the solution of a system of algebraic
equations. The influence of the mechanical properties, and of the damping of the supports to the mode
shapes and to the steady state response of viscoelastically point-supported rectangular plates is investigated
numerically for a concentrated load at the center for various values of the mechanical properties
characterizing the anisotropy of the plate material and for various damping ratios. The results are given for
the frequencies and mode shapes of the first three symmetrical modes. Convergence studies are made. The
validity of the present approach is demonstrated by comparing the results with other solutions based on the
Kirchhoff–Love plate theory.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

This problem is of considerable interest to engineers designing panels at isolated points. The
free vibration analysis of rectangular isotropic plates supported at various points and based on the
Kirchhoff–Love plate theory has been investigated and is well known. However, it appears that
there are only a limited number of studies on the steady state response of viscoelastically point-
supported plates.
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A considerable number of publications have been concerned with the free vibration analysis of
rectangular isotropic and orthotropic plates supported at various points and based on the
Kirchhoff–Love plate theory. A survey of some of these studies was given by Kocat .urk [1].
Although there are many studies of the free vibration analysis of rectangular plates supported at
various points, there are only a limited number of studies on the steady state response of point-
supported rectangular plates. The steady state response to a sinusoidally varying force is
determined for a viscoelastically point-supported square or rectangular plate by Yamada et al. [2]
by using the generalized Galerkin method. A generalization of this study to orthotropic
rectangular plates was investigated by Kocat .urk [1]. In the present study, an extension of the
problem investigated by Kocat .urk [1] is analyzed by using a method based on a variational
procedure in conjunction with a finite difference technique for minimizing the peak values of the
force transmissibilities. Also, by using the same procedure, parametric instability of rectangular
plates by the energy-based finite difference method was investigated by Singh and Dey [3].
In many branches of modern industry, structural elements, such as plates, are fabricated from

composite materials. For this reason, the present investigation may be considered to be a problem
of the mechanics of elements fabricated from composite materials. The purpose of the present
work is to analyze the steady state response of a viscoelastically point-supported orthotropic plate
to a sinusoidally varying force for various values of the mechanical properties characterizing the
anisotropy of the plate material by using a finite difference energy method. The problems
considered are solved within the framework of the Kirchhoff–Love hypothesis. The convergence
study is based on the numerical values obtained for various mesh sizes. In the numerical examples,
the natural frequency parameters, nodal patterns and steady state responses to a sinusoidally
varying force are determined for the first three symmetrical mode types. The accuracy of the
results is partially established by comparison with previously published accurate results for the
corner point-supported plates based on thin plate theory.

2. Analysis

Consider a viscoelastically point-supported rectangular elastic orthotropic plate of side lengths
a; b and thickness h under a concentrated force F ðtÞ at the center of the plate as shown in Fig. 1,
where ki is the spring constant, ci is the damping coefficient, PiðX1i;X2iÞ is the support force of a
point support at the ith support. The axes of the elastic symmetry of the plate material coincides
with the OX1- and OX2-axis. Therefore, the plate is specially orthotropic. Also, the co-ordinate
axes OX1 and OX2 are oriented parallel to the edges of the plate with the origin at O. Because the
plate is orthotropic and the supports are viscoelastic, there are many parameters to be considered.
Therefore, although it is possible to take lots of point supports at arbitrary points, in the
numerical investigations here, for brevity of the study, it will be considered that the plate is
supported symmetrically at the four corner points and ki and ci are taken to have the same
respective values at all the supports denoted by ki ¼ ks and ci ¼ cs: Thus, in the considered
loading and support conditions, only symmetrical vibrations arise in the plate. Under the above
mentioned conditions, the steady state responses of the viscoelastically corner point-supported
plate to a sinusoidally varying force for various damping values will be determined by using a
variational method in conjunction with a finite difference technique. The procedure essentially
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consists of dividing the surface of the plate into a regular gridwork, then by means of difference
operators the total energy of flexural vibrations is discretized in terms of gridpoint deflections.
Application of Lagrange’s equation with respect to each gridpoint deflection in succession yields a
set of linear algebraic equations. For a plate undergoing sinusoidally varying force F ðtÞ ¼ Qeiot;
where o is radian frequency, the strain energy of bending in Cartesian co-ordinates is given by
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1
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In Eq. (1), D11;D22;D66 are expressed as follows:
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where G12 is shear modulus. E0
1;E

0
2 are derived as follows:
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Here E1;E2 are Young’s moduli in the OX1 and OX2 directions, respectively, and n21 is the
Poisson ratio for the strain response in the X1 direction due to an applied stress in the X2

direction. The potential energy of the external force is

Fe ¼ �FðtÞW : ð4Þ

As it can be seen from Eq. (4), to determine the potential energy of the external force, it is
necessary to use the displacement of the location of the force. In the present study, the location of
the force is chosen as a gridpoint. If the force is not at any gridpoint, for calculating the potential
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Fig. 1. Viscoelastically point-supported rectangular anisotropic (orthotropic) plate subjected to an external force.

T. Kocat .urk, G. Altinta-s / Journal of Sound and Vibration 267 (2003) 1143–1156 1145



energy of the external force, the displacement of the location of the external force can be
calculated by using an interpolation procedure with respect to the neighbor gridpoints. The
kinetic energy of vibration is

T ¼
1
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and the additive strain energy and dissipation function of viscoelastic supports are
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Introducing the following non-dimensional parameters:

x1 ¼
X1

a
; x2 ¼

X2

b
; a ¼

a

b
; %wðx1; x2; tÞ ¼ wðx1;x2Þeiot ¼ W=a; i ¼

ffiffiffiffiffiffiffi
�1

p
; ð7Þ

the above energy expressions can be written as
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In order to integrate the energy expressions in Eq. (8a–e), an area element with gridpoint
designation shown in Fig. 2 is used. The derivative terms can be approximated in terms of discrete
displacements at gridpoints by using the following finite difference operators:
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and
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where

aQ ¼
1 for pivotal point m; n at the plate center;

0 otherwise;

(

in which am;nDx1Dx1 is the area element assigned to the location m; n in Fig. 2. The factor am;n is
unity in the interior region of the plate, but it is 1

2
when the pivotal point m; n is on the edge of the

plate, and 1
4
when it is at the corner of the plate.

The energy for the whole plate can be found by summing over the entire area of the plate. Thus
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where N is taken as the number of the mesh points in each of the two directions in the plate region
as shown in Fig. 2a, (N � N) is the total number of the area elements on the plate. The governing
differential equation as obtained from the Lagrange’s equation is given as
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where %wm;n is the m; nth discrete displacement and the overdot stands for the partial derivative
with respect to time. Introducing the following non-dimensional parameters,
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and remembering that %wðx1;x2; tÞ ¼ wðx1; x2Þeiot; which was given in Eq. (7), by using Eq. (12) for
the mesh point m; n with Eq. (10a–e) results in the following expression:
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For the whole mesh points, by using Eq. (14), the following set of linear algebraic equations is
obtained which can be expressed in the following matrix form:

½A	fwg þ ilg½B	fwg � l2½C	fwg ¼ fqg; ð15Þ

where ½A	; ½B	 and ½C	 are coefficient matrices obtained by using Eq. (14) for all mesh points.
For free vibration analysis, when the external force and damping of the supports are zero in

Eq. (15), this situation results in a set of linear homogeneous equations that can be expressed in
the following matrix form:

½A	fwg � l2½C	fwg ¼ f0g: ð16Þ

Numbering of the mesh points is shown in Fig. 2b. By decreasing the dimensionless mesh
widths, D ¼ Dx1 ¼ Dx2; the accuracy can be increased.
The total magnitude of the reaction forces of the supports is given by

X4
j�1

Pi ¼
X4
j�1

ðkj þ icjwÞawðx1j; x2jÞ; ð17Þ

and therefore the force transmissibility at the supports is determined by

TR ¼
X4
j�1

Pi=F ¼
X4
j�1

ðkj þ igjlÞwðx1j;x2jÞ=q: ð18Þ

The number of unknown displacements is ðN þ 2Þ2; where N2 is the mesh size in the plate
region. Again, the number of equations which can be written for each point in the plate region and
outside the plate region by using Eq. (14) is ðN þ 2Þ2; which is given in matrix form by Eq. (15).
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Therefore, the total number of these equations is equivalent to the total number of unknown
displacements and these unknowns can be determined by using the above mentioned equations.

3. Numerical results

The steady state response to a point force F ðtÞ acting at the center of an orthotropic square
plate, viscoelastically supported at four points which are symmetrically located at the corners or
on the two diagonals, is calculated numerically. The parameters ki and gi are taken as having the
same respective values at all the supports denoted by ki ¼ ks and gi ¼ gs: Because of the structural
symmetry and symmetry of the external force, only symmetrical vibrations arise in the plate. The
symbol SS represents symmetrical vibration with respect to centerlines.
A short investigation of the free vibration of an elastically point-supported plate is necessary for

comparing the obtained results with the existing results and for a better understanding of the
responses presented in this study. The natural frequencies of the elastically point-supported plate
are determined by calculating the eigenvalues l of the frequency equation obtained by taking the
damping parameter of the supports as gs ¼ 0 and q ¼ 0 in Eq. (15). In the case gs ¼ 0 and q ¼ 0;
the obtained results for k ¼ 0 and k ¼ N correspond to those of completely free and point-
supported plates respectively. These results are tabulated and compared with the existing results
for completely free and point-supported plates in Table 1. Also, the mode shapes of the vibration
can be determined from Eq. (16) by taking a displacement as known and calculating the
eigenvectors corresponding to the eigenvalues. In Table 2, the frequencies at which the peak
values of the force transmissibilities occur are determined for various damping parameters gs for
ks ¼ 100 by using Eqs. (15) and (18). As far as the authors know, there are no results to compare
the results given in Table 2. It should be noted that in Fig. 3a, the comparison of the variation of
the frequency parameter with ks is for E2=E1 ¼ 1; E2=E1 ¼ 0:8; E2=E1 ¼ 0:6 and the mesh size is
ð31� 31Þ in the case gs ¼ 0: In all of the numerical calculations, n21 is taken as 0.3 and the
locations of the point supports are chosen at the corners of the plate. In Fig. 3a, the values of the
ordinates at ks ¼ 0 and ks ¼ N; respectively, represent the frequency parameters of an
unconstrained free plate and a simply point-supported plate. When increasing the parameter
ks; the frequency parameters increase monotonically and ultimately become the values of a simply
point-supported plate. In the isotropic case, nodal lines arising in the SS � 2 vibration mode
coincide with the diagonals passing through the supports for E2=E1 ¼ 1 as seen in the mode
shapes, Fig. 3b, and therefore the frequency parameter remains constant without being affected
by the variation of ks [1,2], as can be seen from Fig. 3a. However, in the orthotropic case, nodal
lines arising in the SS � 2 vibration mode do not coincide with diagonals, (Fig. 3b, SS � 2 mode)
and their shapes change with the variation in ks [1]. In the SS � 3 mode, the circle changes its
shape when the plate is orthotropic; but this difference is very small for the parameters considered.
In Fig. 4a–c, the convergence of the SS � 1; SS � 2 and SS � 3 modes are presented,

respectively, for the following orthotropy values: E2=E1 ¼ 1; E2=E1 ¼ 0:8; E2=E1 ¼ 0:6: It is
shown that the convergence with respect to mesh size is quite good in the considered cases. As it is
observed from Fig. 4a–c, the frequency parameter increases as the mesh size increases: It means
that the convergence is from below for the considered symmetric modes, and with increasing the
mesh size the exact value can be approached from below. But, the convergence can be from above
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or below for the present solution method. The reason of this situation can be understood by the
following remark given by Johns and Nagaraj [4]: ‘It should be remembered that energy methods
always overestimate the fundamental frequency, so with more refined analyses the exact value can
be approached from above. Conversely, the finite difference method appears to underestimate
the natural frequency and with increasing refinement in the analysis the exact value can be
approached from below’. However, in the present study, by introducing the constant am;n

the energy is estimated realistically and therefore the convergence characteristic of the finite
difference technique becomes dominant, namely the convergence is from below in the present
study for the considered modes. Also, it should be noted that, the results for the in-between mesh
sizes always fall between those of the upper and lower mesh sizes. In Table 1, the obtained results
are compared with those of obtained by Kocat .urk [1] for a completely free and a corner point-
supported orthotropic square plate. It is observed from Table 1 that the results are in good
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Table 1

Frequency parameters l for a free and simply point-supported orthotropic square plate supported at the corners:

n21 ¼ 0:3; gs ¼ 0

Vibration

mode

E2=E1 Kocat .urk Present Narita [5]

point sup.

Venkateswara et al. [6]

point sup.

ks ¼ 0 ks ¼ N ks ¼ 0 ks ¼ N

SS � 1 1.0 0 7.139 0 7.107 7.1189 7.11088

0.8 0 6.815 0 6.686

0.6 0 6.326 0 6.083

SS � 2 1.0 19.684 19.684 19.579 19.579 19.5961 19.5961

0.8 18.033 18.329 17.877 18.212

0.6 15.674 16.839 15.496 16.643

SS � 3 1.0 24.347 44.383 24.248 44.292 44.3696 —

0.8 23.508 43.237 23.339 41.642

0.6 22.981 41.786 22.757 38.447

Table 2

The frequencies at which the peak values of the force transmissibilities occur: n21 ¼ 0:3

e gs ¼ 0 gs ¼ 1 gs ¼ 5 gs ¼ 10 gs ¼ 25 gs ¼ 50 gs ¼ 100 gs ¼ 500 gs ¼ 1000

SS � 1 1.0 6.722 6.723 6.754 6.829 7.003 7.076 7.088 7.107 7.107

0.8 6.361 6.362 6.387 6.448 6.591 6.657 6.679 6.686 6.686

0.6 5.837 5.838 5.853 5.893 6.002 6.057 6.076 6.083 6.083

SS � 2 0.8 18.192 18.192 18.186 18.320 18.214 18.212 18.212 18.212 18.212

0.6 16.572 16.571 16.548 16.948 16.653 16.649 16.644 16.643 16.643

1.0 40.603 40.993 43.559 44.089 44.259 44.285 44.290 44.292 44.292

SS � 3 0.8 38.591 38.912 40.985 41.453 41.611 41.638 41.641 41.642 41.642

0.6 36.212 36.433 37.922 38.295 38.427 38.441 38.446 38.447 38.447
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Fig. 3. (a) Frequency parameters of square orthotropic plates elastically supported at the corners. n21 ¼ 0:3: (b)
Frequency parameters of square orthotropic plates elastically supported at four points symmetrically located on the

diagonals. n21 ¼ 0:3; ks ¼ 100: The nodal patterns for the SS � 1; SS � 2 and SS � 3 vibrations.

Fig. 4. (a) Convergence of the SS � 1 mode. ks ¼ N: (b) Convergence of the SS � 2 mode. ks ¼ N: Convergence of
the SS � 3 mode. ks ¼ N:
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agreement. Also the results for the corner point supports obtained by Narita [5] by using the
classical Ritz method and by Venkateswara Rao et al. [6] by using a finite element method for the
first three SS modes are given again in Table 1, and are in better agreement with the present
results than those of Kocat .urk [1] and Yamada et al. [2]. Fig. 5 shows the force transmissibilities
for various E2=E1 values for a viscoelastically point-supported plate for gs ¼ 1; ks ¼ 100: It is
observed from Fig. 5 that, when E2=E1 ratio is different from unity, the SS � 2 mode occurs. This
result was also determined by Kocat .urk [1].
Fig. 6 and also Fig. 5 show that within the frequency range of the figures, when E2=E1 ratio is

different from unity, three resonant peaks appear for the SS � 1; SS � 2 and SS � 3 vibrations,
and also antiresonant peaks or lowest values appear between adjacent frequencies. In Fig. 6, the
solid lines ðgs ¼ 0Þ represent the response curve of a plate with undamped elastic point support,
and the dotted lines ðgs ¼ NÞ a plate with simple supports. The four points of intersection p; r; s; t
of these two lines are fixed points, through which all the response curves pass, regardless of the
damping parameters. This result was also determined by Yamada et al. [2] for isotropic
viscoelastically point-supported plates. By choosing a suitable value for the damping parameter gs;
it is possible to reduce the peak values of the force transmissibilities to the values of the force
transmissibilities which correspond to the points p; r; s; t; Fig. 6a–c. To show this situation better,
the considered frequency regions are expanded and shown on the right-hand sides of Fig. 6a for
the SS � 1 mode, Fig. 6b and c for the SS � 2 mode. Existence of such points is useful for an
optimum design of a system by choosing appropriate damping parameter. Within a certain range
of the frequencies, the force transmissibilities are less than unity, which indicates the possibility of
vibration isolation. When E2=E1 is unity, the SS � 2 vibration with nodal lines passing through
the supports does not arise in the plate. Therefore, in the case of SS � 2 mode, the peak values of
the force transmissibilities do not occur for the isotropic case and the line for this mode in Table 2
is not shown.
Fig. 7 shows that with the variation of damping parameter gs; there is a damping parameter for

which the values of the resonant peaks are minimum. The resonant peaks occur at different values
of l while changing the damping parameter gs: However, the frequency parameter l remains
between the frequency parameters l obtained for gs ¼ 0 and N: Therefore, in Fig. 7, while
changing gs for obtaining minimum peak value of the force transmissibility for the considered
mode, the frequency parameter l also changes a little. As it was explained before, l changes
between l obtained for gs ¼ 0 and l obtained for gs ¼ N: From Fig. 7, it is concluded that there is
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Fig. 5. The force transmisibilities of square orthotropic plates for various E2=E1 values for corner supported plate.

gs ¼ 1; n21 ¼ 0:3; ks ¼ 100:
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a certain value of gs at which the resonant peaks become minimum. Figs. 6a and 7a show that, for
gs ¼ 13; at l ¼ 6:9; the minimum peak value of the force transmissibility is 22.9 for the SS � 1
mode for E2=E1 ¼ 1: It is observed from Figs. 6a and 7c that for gs ¼ 2:5; at l ¼ 42:03; the
minimum peak value for the third mode is 5.0 for E2=E1 ¼ 1: It is seen from Figs. 6c and 7b that,
for gs ¼ 2:7; at l ¼ 16:662; the minimum peak value of the force transmissibility is 0.8 for
the SS � 2 mode for E2=E1 ¼ 0:6: Because the damping parameters for the minimum peak values
of the force transmissibilities for the SS � 1 and SS � 2 modes for E2=E1 ¼ 1; E2=E1 ¼ 0:8;
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Fig. 6. The force transmissibilities of square orthotropic plates viscoelastically supported at the corners under the

action of the center-force for various gs values for (a) E2=E1 ¼ 1:0; (b) E2=E1 ¼ 0:8; and (c) E2=E1 ¼ 0:6: n21 ¼ 0:3;
ks ¼ 100:
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E2=E1 ¼ 0:6 orthotrophy ratios are very close to each other, the minimum peak values of the force
transmissibilities with the variation of damping parameter gs for E2=E1 ¼ 0:8; E2=E1 ¼ 0:6 are not
shown in the figures.

4. Conclusions

By using an energy-based finite difference method, the steady state response of a viscoelastically
point-supported orthotropic square plate to a sinusoidally varying force has been studied and
compared with the existing results.
By the application of the above-mentioned solution technique, the first three SS natural

frequencies are determined, the converge characteristics of the frequency parameters are
investigated and the response curves to a sinusoidally varying point force acting at the center
are determined numerically for orthotropic square plates viscoelastically supported at four points
at the corners. The effect of the orthotropy on the frequency parameters and response curves is
investigated. It is seen that, because of the orthotropy, the SS � 2 mode occurs in the plate and
this mode may be more important than the others for some orthotrophy ratios. Also, the
frequency ranges, where the vibration isolation occurs, are determined and the damping ratio
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Fig. 7. The minimum resonant peak values with the variation of gs for (a) SS � 1 mode, E2=E1 ¼ 1:0; (b) SS � 2 mode,

E2=E1 ¼ 0:6; and (c) SS � 3 mode, E2=E1 ¼ 1:0: n21 ¼ 0:3; ks ¼ 100:
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values for obtaining minimum peak values of force transmissibilities are obtained for some
considered parameters. These obtained results may easily be extended to multiple support
conditions and may be useful for designing mechanical and structural systems under external
dynamic loads. The solution procedure followed here can easily be used for various support and
loading conditions.
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